
数学教学设计
作为一名优秀的教育工作者,常常需要准备教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么什么样的教学设计才是好的呢?以下是小编精心整理的数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学教学设计1教学目标
1、结合实例和具体活动,感知镜面对称现象。掌握镜子内外图形对称、左右错位的规律,能利用镜子寻找对称轴(特别是不能对折的物体)。
2、引导学生观察、探索、发现、交流,经历探索镜面对称现象特征的过程,使学生学会从数学的角度解释生活,发展学生的空间观念和创新能力。
3、感受数学与生活的密切联系,激发学生的学习兴趣,使每个学生都能在活动中体验成功的喜悦。
教材分析
本节内容是在学生学习了轴对称图形知识的基础上进行教学的,是发展学生空间观念的重要素材。学生的空间观念要在他们自己的观察、试验、操作等“做数学”的体验活动中才能不断生成和发展,因而要挖掘和利用身边的实例,引导学生在“做数学”中体会数学知识与生活的密切联系,发展空间观念,既起到巩固旧知识的作用,又为学习其他图形奠定基础。
镜子不仅是人们生活中常见的生活用品,它还包含着许多数学知识,为了让学生全面准确地了解、认识镜子中的数学奥秘,根据学生的年龄特点,把镜子中的数学知识蕴藏于游戏、活动中。活动的设计是具有丰富的现实背景,具有生命活力的,通过组织学生开展自主探究、合作交流等活动,让学生经历一次“研究与发现”的全过程,让学生在充分体验的基础上自主认识,在交流中迸发灵感,挖掘生活中蕴藏的数学知识,培养收集、分析信息的能力;通过动手操作,建立镜面对称现象的模型,并能运用镜面对称的知识解决实际问题,发展空间观念和数学思维能力。
学校及学生状况分析
我校地处市中心,教学设备较齐全,学生多数来自经济条件较好的家庭,家长对教育比较重视,学生的知识面较广。在新课程改革的理念指导下,教师注重学习方式的转变,给予学生更多探索、创造、交流的机会,因此学生的学习兴趣和自信心不断增强,动手实践能力和创新能力不断提高。
教学设计
(一)创设情境,激趣导入
1、由生活伙伴引入
今天,老师带来了一个生活中不可缺少的好伙伴,瞧,它是什么?从镜子中你们看到了什么?
2、由猜测引发矛盾冲突,激发求知欲(全班同学照着大镜子整理衣服和红领巾。)
师:咦,我发现××同学今天头上还戴着漂亮的发卡,请同学们看一看,如果我们从镜子中看她,她的发卡在她头上的哪一边?
(先猜一猜,学生猜测后,请她上台面向大家,举起右手,再转身,验证猜测是否正确。)
师:发卡在她头上的右边,为什么从镜子中看是在左边呢?今天我们一起去探究镜子中的数学奥秘!(板书课题)
(评析结合学生实际情况创设情境,激发学生的学习兴趣和探究欲望,通过照镜子的体验,调动学生原有的生活经验,引发学生认知冲突,生成“愤”与“悱”的课堂氛围,使学生初步感知镜面对称现象,体现数学与生活的密切联系。)
(二)动手实践,合作探究
1、拿起镜子照一照身边的物品,看看你能发现什么。
师:谁来说说你的发现?镜子内外,左右是否相同,还是相反?
(先独立思考,再在小组内讨论;然后小组派代表汇报,用实物进行验证。)
师引导学生归纳:镜子内外,左右相反。
(评析转变学生学习方式,为其创设自主探究、合作交流的空间,让学生在“提出假设――验证假设”的实践中充分体验镜子内外空间事物的位置与顺序所发生的变化,逐步探究出镜面对称的特征,经历与体验由问题到假设再到验证的数学过程与方法。)
2、机灵狗不知道镜子中的这个奥秘,所以碰到一个难题,同学们愿意帮助它解决吗?
师:机灵狗从镜子中看到的时间对吗?为什么?
(先独立思考,再小组合作,利用手中的镜子和钟面实践,然后小组派代表汇报。)
(评析通过运用知识帮助机灵狗解决实际问题,让学生感受到数学与生活的密切联系,体验到帮助别人的快乐。)
师:还有哪些时间从镜子中看,容易被看错?
(评析让学生在实践中学习,培养学生的空间观念,发散学生思维。)
3、刚才同学们帮助机灵狗解决了问题,它送给每个人一张智慧大“王”的图片,用镜子照一照,你又有什么精彩的发现?跟同伴说一说。
引导学生归纳:镜子内外,互相对称,利用镜子能看到镜子里的图形和整个图形。
(评析变学数学为做数学,让学生在活动中充分体验镜面对称现象。)
4、课本上还有一些美丽的对称图形,你能把镜子放在图中适当的位置,看到图的全部吗?
(学生上台展示做法。)(评析运用镜面对称的知识解决实际问题。)
5、老师手上这些图形只有一半,猜猜,它们的整个图形分别是什么?
你能想办法验证你的猜想吗?
引导学生归纳:镜子内外,左右相反,互相对称,这种现象称为镜面对称现象。
(评析通过各种动手操作活动,使学生逐步建构镜面对称现象的模型。)
(三)解释应用,发展思维
1、模拟照镜子的游戏。
师:假设苏老师站在镜子前,谁来做镜子中的苏老师呢?(师生表演。)
采访镜子中的人:你为什么能做得这么准确?
(同桌互相做游戏,请一组学生全班展示。)
师:他们为什么能准确地做出对方的动作?
(评析通过游戏活跃课堂,培养学生空间感觉和空间想像能力,进一步感知镜面对称现象的特征。)
2、同学们能把镜面对称的知识运用在生活中,老师决定奖励你们,请大家看《猴子捞月》的动画片。
师:猴子为什么捞不到月亮?
(学生独立思考,再选代表回答。)
师:镜面对称现象在大自然中还有许多,我们一起去欣赏祖国美丽的山水!(放录像)欣赏之后你想说什么?你发现了什么?
(评析让学生感受数学与生活的密切联系,同时渗透热爱祖国的品德教育,使学生再次体验镜面对称现象。)
3、生活中应用镜面对称知识可以帮助我们解决什么问题?
师:我们来看看这些录像和图片,你能发现什么?镜子和水的作用分别是什么?
(播放《五朵金花》录像片断:姑娘在泉边梳妆;出示图片:牙科检查镜、汽车后视镜、商场防盗镜等。)
(评析引导学生体验数学的应用价值,在解释应用中提高认知水平。)
(四)归纳小结,提升认识
师:今天同学们有什么收获?你的心情怎样? ……此处隐藏15239个字……录自己从家到学校所用的时间.
六、板书设计
数学教学设计13一、教学目标
1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.
2.培养学生抽象的数学思维能力.
3.通过例题和习题,训练学生综合解题的能力和计算能力.
4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.
二、重点·难点
1.重点
理解和应用负整数指数幂的性质.
2.难点
理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.
三、教学过程
1.创造情境、复习导入
(l)幂的运算性质是什么?请用式子表示.
(2)用科学记数法表示:①69600
②-5746
(3)计算:①
②
③
2.导向深入,揭示规律
由此我们规定
规律一:任何不等于0的数的0次幂都等于1.
同底数幂扫除,若被除式的指数小于除式的指数,
例如:
可仿照同底数幂的除法性质来计算,得
由此我们规定
一般我们规定
规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.
3.尝试反馈.理解新知
例1计算:(1)(2)
(3)
(4)
解:(1)原式
(2)原式
(3)原式
(4)原式
例2用小数表示下列各数:(1)
(2)
解:(1)
(2)
练习:P141 1,2.
例3把100、1、0.1、0.01、0.0001写成10的幂的形式.
由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.
问:把0.000007写成只有一个整数位的数与10的幂的积的形式.
解:
像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.
例4用科学记数法表示下列各数:
0.008、0.000016、0.0000000125
解:
例5地球的质量约是 吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字)
解:
(吨)
答:木星的质量约是 吨.
练习:P1421,2.
四总结、扩展
1.负整数指数幂的性质:
2.用科学记数法表示数的规律:
(1)绝对值较大的数,n是非负整数,n=原数的整数部分位数减1.
(2)绝对值较小的数,n为一个负整数,原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)
五、布置作业
P143A组4,5,6;B组1,2,3,4.
参考答案
略.
六、板书设计
投影幕
引入:
例2
例4
例3
例5
例1
练习
练习
数学教学设计145.1总体平均数与方差的估计
学习目标:
1、理解总体与样本的关系,认识并体会统计估计的意义,实施办法及在实际问题中的应用。
2、理解用样本平均数、方差推断总体平均数与方差。
重点、难点
体会统计思想,并会用样本平均数和方差估计总体平均数和方差。
教学过程:
一、旧知回顾:
1、在调查研究过程中,总体是XXX,个体是XXX,样本是XXX,样本容量是XXX
2、平均数的计算公式是
3、方差的计算公式是
二快乐自学:
阅读教材P140—144完成下列练习。
1、在总体中抽取样本,通过对样本的分析,去推断总体的情况,这就是思想。
2、用样本平均数、方差去估计总体的XXX然后再对事件发展做出决断、预测。
3、在“说一说”及“动脑筋”中,分别是可以用样本的
去估计总体的XXX、
4、例题是通过计算零件直径的方差来得到机器两个时段的运作性能是否稳定正常的。
三、巩固练习
数学教学设计15教学目标:
1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
教学过程:
一、谈话导入
1. 出示苹果、梨、橘子的图片 问:起一个总的名称是什么?
2. 出示:仿照第一题填空
(1)时间:3小时 20分 2小时45分
(2)总价:5元 ( ) ( )
(3)( ):6千克 800克 3吨350克
填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?
二、学习新课
(一)相关联的量
教师做实验,向弹簧称上加钩码问:
(1) 这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?
指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。
追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?
(二)学习成正比例的量
1、出示19页表格
观察图像,填表,回答下面的问题:
(1) 表中有哪两个相关联的量?
(2) 正方形的周长是怎样随着边长的变化而变化的?
(3) 正方形的面积是怎样随着边长的变化而变化的?
(4)它们的变化规律相同吗?
小组讨论交流汇报
2、20页第2题
3、正比例的意义
(1)例1和例2有什么共同点?(两种相关联的量,比值一定)
师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。
问:现在你知道什么叫成正比例的量了吗?自由说说 指生回答 阅读课本
师板书关系式:y/x=k(一定)
(2) 那么,要判断两种量是否成正比例的量该看什么呢?
三、 巩固提高:19页说一说。
四、 全课小结